Powerful New Laser to Boost Car Manufacturing

With the ability to cut and shape ultra-high-strength boron steel up to one thousand times faster than existing technology, a new precision pulse laser looks set to boost the car industry with a 10 % reduction in waste products, a 5 % reduction in chassis costs, and a two-third decrease in manufacturing time. (Source: Fiat / Photonics21)

European scientists are developing a new pulsed laser system to cut and shape ultra-high-strength industrial materials that are notoriously difficult to process at unimaginable speeds, while producing considerably less waste. Operating at 1.5 kilometers per second, the new laser will be powerful enough to cut the hardest boron steel used in car construction at one cubic centimeter per minute – over a thousand times faster than existing technology that currently ablates steel at one cubic millimeter per minute.

Exerting an average power of 2.5 kW, or 100 kW in a single pulse, and with repetition rates up to 1 GHz – a thousand times more than the current 1-MHz upper limit), the laser will have the control and refinement to etch molds for vehicle parts at micron-scale accuracy as well as micro-weld dissimilar metals for solar thermal absorbers.

Aiming to improve car manufacturing speed and efficiency, while reducing the potential production costs and environmental impact, the new pulse laser system has received a five million euro development grant from the European Commission.

Boron steel, which is used in car bodies because of its super strength, is so durable that it is often difficult to cut or shape. The processes used to ensure its durability usually remove many of the steel’s fundamental properties, such as the workability. Although boron steel can be cut with a plasma arc torch, this can instantly heat the metal to over 650 ºC and is not as precise or as quick as a pulsed laser.

Going by the acronym PULSE, the consortium behind the powerful new laser draws on expertise from eleven research institutions and industry partners from six different European countries and is coordinated by Tampere University in Finland.

Project coordinator Dr Regina Gumenyuk said: “While ultrashort-pulse laser (USPL) technology has been around for decades, breakthroughs have meant it has become something of a buzzword, being awarded the latest Nobel Prize for physics, and increasingly being deployed in industrial production.”

Laser technology exists today that can cut boron steel, but it is far too slow for any large scale production. “By harnessing the unique characteristics of patent protected tapered double-clad fiber amplifiers power-scaled multichannel laser, the PULSE project will create unparalleled high-power beam qualities, M2 < 1.1, and pulse energies between 2.5 and 250 µJ”, Gumenyuk continued.

The new system looks to have a positive environmental impact by being so efficient that waste products will be reduced. “PULSE is committed to improving manufacturing, but also reducing the impact on the environment, therefore we can confirm that a ten-percent reduction in waste products is certainly achievable”, Gumenyuk concluded.

The laser system will enable an improved digital design to lighten vehicle chassis weight with benefits to fuel economy and increase the range of electric vehicles. The consortium expects a prototype to be ready by 2021.

The PULSE consortium received a grant of € 5,206,207.50 from the EU via the H2020 programme and is made up of partners from six countries: United Kingdom (Aston University and Modus Research and Innovation); Finland (Ampliconyx); Germany (Lunovu and Hochschule Mittweida); Greece (Nanotypos OE, Foundation for Research and Technology Hellas, and Prime Laser Technology Iliaka Systimata Thermansi Anonimi Viomichaniki Emporiki Etaireia); Italy (Centro Richerche Fiat SCPA and Onostampi SRL); Latvia (Ceramoptec Sia; source: Photonics21)

Link: pulse-laser.eu, Tampere University / Modus Research and Innovation Ltd., Dundee, UKPhotonics21 c/o VDI Technologiezentrum GmbH, Duesseldorf, Germany

Speak Your Mind