Photonics to Help Dairy Industry with New 5-Minute Scan

Goal of the Moloko project ist to develop a new optical sensor that can check the presence of contaminants in milk and produce a detailed reading very quick, to dramatically reduce costs, wastage, and antibiotic use linked to the production, quality control, and processing phases in the dairy industry. (Source: Moloko)

A new optical sensor that can check the presence of contaminants in milk and produce a detailed reading very quick, is set to dramatically reduce costs, wastage, and antibiotic use linked to the production, quality control, and processing phases in the dairy industry.

Scanning milk for two proteins and ten contaminants simultaneously, the optical sensor will take measurements directly on-site at each point of the long and logistically-spread milk value chain. Delivering a detailed reading in about five minutes, the sensor can look for any antibiotics ingested by the cows that have been transmitted to the milk. Using the collected information, companies can prevent contaminants, such as antibiotics and aflatoxin, from entering the food chain.

Across dairy farms today standard tests take days to perform, whereas this new palm-sized sensor will be the easiest way to check the presence of milk components (such as kappa-casein proteins) that are quality parameters for milk and other dairy products. The same readout can help prevent food poisoning outbreaks like Staphylococcal enterotoxins (SEs) while at the same time predicting milk quality (kappa casein), and cow health (lactoferrin).

“With this sensor system”, says project coordinator Stefano Toffanin, researcher at the Italian National Research Council (CNR) in Bologna, “farmers will be given an insight to understand the health of their cows, dairies will be able to make instant judgements about the contaminants in milk, and processors can keep an eye on quality control.”

“Our sensor is a multiparameter tool, based on innovative nanophotonic technologies. It is designed for detecting milk contaminants, and provides an inexpensive, early warning system. This will help the entire dairy industry to save time, millions of euros and gallons of wastage,” said Toffanin.

Typically, several checks are required at nearly every stage of the production process to avoid any possible contamination of dairy products delivered to consumers, with samples often needing to be taken and sent away to a laboratory. However, with the new sensor system, milk samples can be analyzed by both technicians at the dairy plant level and farm-based users who are not experts, within a 5-minute period.

“The ability to monitor milk cheaply and regularly at point-of care means farmers and national official control body can build up a data profile for animals, tracking health. Earlier intervention by famers and veterinarians can lead to prudent use of antimicrobials and an overall reduction of their use”, Toffanin said.

Used as an offline, hand-held tool by non-specialists and technicians alike, the miniaturized sensor system can be integrated into a milking machine for inline detection. Milk-processors check food-safety parameters upon delivery. When a batch is found to be contaminated, the processors must reject and destroy the product leading to serious financial losses for farmers.

“The innovative milk sensor system can be a valuable tool when implemented throughout the entire dairy supply chain. It contributes to contamination-free milk and dairy products, as well as significantly reducing waste and economic losses.”

The system works by exploiting highly miniaturized organic optoelectronic devices with a grating supporting surface plasmon resonances (SPR). SPR are waves of free electrons at the surface of a metal. They are extremely sensitive to binding events occurring on the surface and can be excited and detected by a light beam impinging on the surface. Then, a change in the reflected intensity carries out information on the “in situ” interaction of specific, pre-programmed receptors with selected bacteria, toxins, antibiotics, and, in general, with contaminants.

“Detection and investigation of contaminants in fluids is a rapidly growing field in SPR bio-sensing. Until recently optical constrains, high costs, and limitations in the detected parameter number prevented the use of SPR outside of a laboratory. Within our unique integrated sensing architecture, Moloko can deliver results in minutes, for advanced dairy analysis”

Going by the acronym Moloko – Multiplex photonic sensor for plasmonic-based online detection of contaminants in milk –, the consortium developing the sensor system expects to have a prototype ready in three years. Moloko is a Photonics Public Private Partnership project that secured € 6 M of EC funding via the Horizon 2020 work program. (Source: Photonics21)

Link: MOLOKO – Multiplex phOtonic sensor for pLasmonic-based Online detection of contaminants in milK,beWarrant S.L., Brussels, Belgium

Speak Your Mind

*